
a) +(n)
=+( -) + c Constant amount of Work

With a Herations so it makes

T(n - 1)
= T(n -2) + C sense that its a linear amount

of work total

T(n) =+(n -2) + C + C

So for Iteration

T(n) =T(n - k) + k
When a = 1 +( = C

So recurrence stars out K= 1 - 1=+ (4) = T(U -( -) +(- <

-T(1) + C - C

=Ch + c c = Ch

= O(n)

(
+(1) =+(n - 1) + n

S
Work per iteration lineat in Input size,

With linear number of iferations as

n decreases by each time
, so we probably

press its O(y
↑(n - 1) =T( - 2) +M - 1)
T(n -2) = T(M - 3) +( -2)

st +(n) = n ++(n - )
= n + (n - 1) ++(1 -2)
= u +(n - 1) + (n - 2) ++( -3)
= u + (n - 1) + .

.. + (n -( - 1) + T(1 - k) a+ it e k
recurrence stops out Mid on rather K= U - /

We conclude +(1)= 2 +( - 1) + ..
. + 2 +T())

-
2

So T() =O(l) as expected



C) T()=T(U/2) + C , constant amount of work periorationAutorand Input is halfed each. so we expect
a logarithmic number of Herations,

· see why ask how many times we can(+ Shalf a before we reach the base case
.

↑((z) =+((H) + c =+(Y(z)+ C

↑ ((x) =T((8) + c =T(y/23) +C

So +(n) =+(M/L) + C Recursion stops when /k = /
= +(Y/(z) + 2C = U = 2k

=+(n/(3)+ 3)
OV lopu = k

=+(M((k) + kC

We conclude T() =T(n) + 10n . c = +(1) +Clou
= C +Clop)

so +(4) = O(10) = O(ropy)



() =2 T(/2) + C , constant work for each call but

2 recursive Calls
.

What do we think

lopanithmic or linearithmic

↑() = 2T((z) + C ↑((2) =CT(/)+C
=2(2+(4(1)+c)+ C ↑(u(1) = 2+((b)+<

=2(2(2T((b)+c) +c)+C ↑(y/2) = 2T(/25)+
= 8+((b)+ GC + C

= 2 +(Y/(k) + (2F- 1) <

Recursion stops out Kelep so we conclude

+(n) = 2 o+(1) +(2- 1) <

= nT (1) + (n - 1) <

= n( + nc c = O(n)

J
.) () = 2T(/) + U morpe sport recurrence.

= (2+((a) +((z)] + u

= + +((t) + n + y

= +(2+(4(b) +/] + zu

= 8 +/(8) + n + 2n

= 2 T(/2) + kU

Recursion stops when Kloph ,

We conclude

↑(n) = 2T(1) + Popu
= UT( + lop

= ch + high = 0(i) as expected.



3) +() = 2+( - 1 + C
,

this could do rorn bad .

↑(n) = 2 +(n - 1 +C jT(n - 1) = 2T(n -2) +C
= 4 +( - 2) + 36

= 8T(n - 3) + TC
= 2

+

T(n - k) + (2k - 1) <

Recurrence stops when Kelly We conclude

T(n) = 24
-

+() +(2) - 1) C

= C + 2 c - c = 0(2)
. Exponential run time very bad!



↓ revisited) Lets reconsider the recurrence
↑() =2TM/L) +C from ~ different

perspective . Why is it lineany Lets consider its recursion

tr

Of
This represents thenoot CallT

By the recurrence relation if makes a more child says.

↑ (1) =+((z) +T(u(z)+
-O d -

=(n ++((a)+ c) +(+((d) ++((n) +c] + C

And the process continues . Lets flaw the full tree
. Each note

In the tree represents a recursive call with cost C
. So if we

can count how many notes are in our tree we can determine how much

Workout algorithm does for an invert of size,

We need to answer

· how many notes at each level Lever I CAS+
· how many levels ? O ↑ C

O O 2 22

O G O O 3 4 C

G G 00 & G G O 4 8C

I 1, I I

I I S

I
I ! ! S

~...
O

I

zoo.(O C Uc00UC C logh



&a the analysis of our recurrence we observed that recursion stops
When Keloph . So our tree has loph loves

,
since every note out the

Previous has2 children at the next level we always have twice

the number of roles at the next level as we do in the previous .

Level 1 2 3 & 5 5... ;

# Notes 1 2 & 8 16 32 . ... zi-n

For every mode in our tree we have a constant c amount of work
.

So summing C Moses at level i) Over from , ... logh we obtain to

Work or runtime of our Algorithm .

C . 2: : = ((zon- 1) = ((n - ) =O(n)
i = C

Hence our algorithm is linean


