Q)

$$
\begin{aligned}
& T(n)=T(n-1)+C \\
& T(n-1)=T(n-2)+C \\
& T(n)=T(n-2)+C+C
\end{aligned}
$$

Constant a mount of work with n Hecoutibns so it makes sense that its a linear amount of work tuinal

So for iteration k

$$
T(n)=T(n-k)+k C
$$

When $n=1 \quad T(1)=C$
So recurrence stops at $K=n-1 \Rightarrow T(n)=T(n-(n-1))+(n-1)<$

$$
\begin{aligned}
& =T(1)+c n-c \\
& =c n+c-c=c n \\
& =o(n)
\end{aligned}
$$

b) $T(n)=T(n-1)+n$, work per itcraction lip ear in ingot size, with linear number of iterations as n decreases by) ea ch time. sa we probably guess its $O\left(n^{2}\right)$

$$
\begin{aligned}
& T(n-1)=T(n-2)+(n-1) \\
& T(n-2)=T(n-3)+(n-2)
\end{aligned}
$$

So $T(n)=n+T(n-1)$

$$
\begin{aligned}
& =n+(n-1)+T(n-2) \\
& =n+(n-1)+(n-2)+T(n-3) \\
& =n+(n-1)+\cdots+(n-(k-1))+T(n-k) \text { at iter } k
\end{aligned}
$$

recurrence stops at $(n=1)$ on rather $k=n-1$

$$
\text { We cuncivic } \begin{aligned}
T(n) & =n+(n-1)+\cdots+2+T(1) \gg^{\prime} \\
& =\frac{n(n+1)}{2}
\end{aligned}
$$

Sou $T(n)=O\left(n^{2}\right)$ as expected
C) $T(n)=T(n / 2)+C$, constant amount of work per Iteration and input is hallel each? "so wo expect a logarithmic number of iterations. $\binom{t_{0}$ see why ask how mons times we can n }{ lull x befoul we reach the bouse case. }

$$
\begin{aligned}
& T(n / 2)=T(n / 4)+c=T(n / 2)+c \\
& T(n / 4)=T(n / 8)+c=T\left(n / 2^{3}\right)+c
\end{aligned}
$$

So $T(n)=T(n / 2)+C \quad$ Recursion stops when $n / 2^{k}=1$

$$
\begin{aligned}
& =T\left(n / 2^{2}\right)+2 C \\
& =T\left(n / 2^{3}\right)+3 C \\
& =T\left(n / 2^{k}\right)+K C
\end{aligned}
$$

$$
\begin{aligned}
& \text { We cuncivde } T(n)=T\left(\frac{n}{2} \operatorname{logn}\right)+\operatorname{logn} \cdot \\
& \begin{aligned}
c & =T(1)+c \log n \\
& =c+c \log n \\
\text { So } T(n)=O(\log n) & \\
& =O(\log n)
\end{aligned}
\end{aligned}
$$

$$
T(n)=2 T(n / 2)+C,
$$

Constant wonk for ouch carl bet 2 recursive calls. What do we think? lojari.thm.e or linearithm.c.

$$
\begin{aligned}
T(n) & =2 T(n / 2)+c & & T(n / 2)=2 T(n / 4)+C \\
& =2[2 T(n / 4)+c]+c & & T(n / 4)=2 T(n / 4)+c \\
& =2[2(2 T(n / 8)+c)+c]+c & & T\left(n / 2^{k}\right)=2 T\left(n / 2^{k}\right)+c \\
& =8 T(n / 8)+6 c+c & & \\
& =2^{L^{K} T\left(n / 2^{k}\right)+\left(2^{k}-1\right) c} & &
\end{aligned}
$$

Recursion stops at $k=l \operatorname{lgh}$ se we conclude

$$
\begin{aligned}
T(n) & =2^{100 n T(1)+\left(2^{100 n}-1\right) c} \\
& =n T(1)+(n-1) c \\
& =n c+n c-c=0(n)
\end{aligned}
$$

d. 2)

$$
\begin{aligned}
T(n) & =2 T(n / 2)+n \quad \text { norge sort recvirence. } \\
& =2[2 T(n / 4)+(n / 2)]+n \\
& =4 T(n / 4)+n+n \\
& =4[2 T(n / 8)+n / 4]+2 n \\
& =8 T(n / 8)+n+2 n \\
& =2^{\prime \prime} T\left(n / 2^{k}\right)+k n
\end{aligned}
$$

Rearsionstops when $k=\log n$. we conclude

$$
\begin{aligned}
T(n) & =2^{\log n T(1)+n \log n} \\
& =n T(1)+n \log n \\
& =c n+n \log n=0(n \log n) \text { onus expected. }
\end{aligned}
$$

e) $T(n)=2 T(n-1)+C$, This covid bo vern bad.

$$
\begin{aligned}
T(n) & =2 T(n-1)+C \quad, T(n-1)=2 T(n-2)+C \\
& =4 T(n-2)+3 C \\
& =8 T(n-3)+7 C \\
& =2^{k} T(n-k)+\left(2^{k}-1\right) C
\end{aligned}
$$

Recurrence steps when $k=n-1$ we conclude

$$
\begin{aligned}
T(n) & =2^{n-1} 1(1)+\left(2^{n-1}-1\right) C \\
& =2^{n-1} C+2^{n-1} C-c=O\left(2^{n}\right) . \text { Exponential runtime vern bad! }
\end{aligned}
$$

∂ * revisited) Lets reconsider the recurrence $T(n)=2 T(n / 2)+c$ from $=$ differ ont perspective. Why is it linear? Lets consider its recursion tree.

And the process cuntinucs. Lets dian the full tree. Eachnole in the tree represents a recursive call with cost C. So if we can count how mons node are in our tree we can determine now much workove algorithm does for an Invert of size n.

We need to answer

- how mans notes wt each level?
- how many level?

Level	Cost
1	C
2	$2 C$
3	$4 C$
0	4
1	
1	$8 C$
1	
$10 g n$	$2^{\log n} \cdot C$

Q 4 the a halbsis of our recurrence we observed that recursion Stope When $k=109 \mathrm{~h}$. So our tree has lough levels. Since every node at the previous has 2 children et the next level we always have twice the number of roles art the next level as we do in the previous.

Level 1	1	2	3	4	5	6	\cdots	i
\# Nodes	1	2	4	8	16	32	\cdots	2^{i-1}

Fou every node in our tree we have a constant c a mount of wonk. So summing C (\#najes at level) over from $1, \ldots, 109$ h we obtain to work or runtime of our algorithm.

$$
\sum_{i=1}^{\log n} C \cdot 2^{i-1}=C \sum_{i=0}^{\operatorname{logn-1}} 2^{i}=C\left(2^{\log n}-1\right)=C(n-1)=O(n)
$$

Hence our algorithm is linear.

