
2 Recurrence Relations

2.1 Introduction

Many algorithms that you will encounter in this class (and upper level algorithms courses) possess
runtimes, denoted by T (n), which can be naturally modelled using recurrence relations.

So, what is a recurrence relation? It is a mathematical equation which is defined in terms of itself
(just like a recursive function is defined in terms of itself meaning that the function makes a call
to itself in its body, usually on a smaller input). Let us explore this further using an example.

The computational analogue of a mathematical function f(n) = f(n�1)+n which calculates the

sum of the first n natural numbers, namely
nX

i=1

i, can be written in the C programming language

as follows.

1 int sum(int n)
2 {
3 if (n == 0)
4 {
5 return 0;
6 }
7 else
8 {
9 return n + sum(n - 1);

10 }
11 }

2.2 Essence of a Recurrence

Now, we have been saying that T (n) denotes the runtime of an algorithm. But we can say a bit
more than that about this important piece of notation. Essentially, T (n) represents the number of
⇥(1) operations our algorithm will perform on an input of size n.

For example, if we have a recurrence relation of the form T (n) = T (n � 1) + ⇥(1), it means
that the algorithm reduces the size of the input it has to work on by 1, denoted by T (n � 1), by
performing a constant amount of work (meaning that the work done is independent of the size of
the input), denoted by ⇥(1). The algorithm keeps on reducing the size of the input it is working
on until it reaches the base case of the recurrence (meaning that the input to the algorithm is small
enough such that the problem can be solved trivially without the need for any further recursive
calls). For example, the recurrence relation for Binary Search can be written as follows,

T (n) =

(
T (n/2) +⇥(1) , if n > 1

⇥(1) , if n = 1

, because the algorithm reduces the size of the sorted array it is operating on by half each iteration
(This is where the T (n/2) comes from) by comparing the given key with the element in the middle
of the sorted array (This is where the ⇥(1) comes from). If the array has one element left, it
performs a single ⇥(1) time operation to determine whether the key is equal to this element or not
which is what gives us the base case of the recurrence.

5



2.3 Solving Recurrences

So, how do you solve recurrences? The simplest method is known as the Recursion Tree method
and that’s all you need to know for now.

2.4 Problems

1. Solve the following recurrence relations.

(a) T (n) = T (n� 1) +⇥(1)

(b) T (n) = T (n� 1) +⇥(n)

(c) T (n) = T (n/2) +⇥(1)

(d) T (n) = 2T (n/2) +⇥(n)

(e) T (n) = 2T (n� 1) +⇥(1)

6

f +(n) = 2+my s


