# Structure-Function Coupling in Brain: Subnet Communicability

Jonathan Parlett · Abhishek Jeyapratap · Ali Shokoufandeh Birkan Tunc · Yusuf Osmanlioglu







# **Communication in the Brain**

- Functional interaction exists between anatomically unconnected brain regions
  - □ How does this indirect communication occur?
  - □ What is the correct communication model?
- Following previous literature, we propose a model of signal propagation in brain networks



# Structure-Function Coupling (SFC)

#### **Communication models**

provide a framework to simulate function using structure

#### Structure-function coupling

- similarity between empirical and simulated functional connectivity
- commonly measured by Pearson's correlation coefficient (r)



## **Communication Models: Quality of Service**

- □ Two competing factors: efficiency and robustness
- Efficiency: use the least amount of energy to propagate signal
  - Communicate through single shortest path
- Robustness: communication should withstand local connectivity failures by allowing redundancy
  - □ Communicate through multiple paths simultaneously

| ervice |  |
|--------|--|
|        |  |

# **Communication Models: Shortest Path**

- Due to the brain's efficient wiring economy, the brain was assumed to utilize a very efficient communication model.
  - □ The de facto model has been **shortest path**
- Pros:
  - Very efficient as signal need only propagate over single optimal path
- **Cons:** 
  - Not robust as it lacks redundancy in message passing, making it vulnerable to localized lesions
  - requires each region to have **global knowledge** of the network
    for optimal message passing



#### Shortest (strongest) Path

# **Communication Models: Communicability**

- Diffusive communication models are shown to more accurately reflect the functional dynamics of the brain
  - propagate signal through multiple pathways between regions
    concurrently
- **Communicability** is the state of the art diffusive model
  - propagates signal through all possible pathways between regions
- **Pros**:
  - Very robust since local perturbations to connectivity has minimal consequences on communication due to high redundancy
- **Cons:** 
  - Highly inefficient as more energy is required to propagate signal over multiple pathways



## **Proposed Model: Subnet Communicability**

- Subnet Communicability: a balance between efficiency and redundancy in communication
  - pick a small subset of nodes to serve as backbone
  - propagate signal **diffusively** through paths utilizing these nodes
- Adjusting the subnetwork size
  - Fewer messages are sent in diffusion through a smaller subnetwork
  - Large subnetwork: more **redundancy**, less efficiency.
  - Small subnetwork: less redundancy, more **efficiency**.



## Which subnetwork?

- Subnet communicability is parameterized by the set of nodes constituting the subnetwork
- □ Which subnetwork do we use as a communication backbone?
  - Determine the **optimal size** of subnetwork
  - Determine the set of nodes leading to best structure-function coupling







Dataset:

- 200 individuals from young adult dataset of HCP data
- □ Structural (DWI) and resting state functional (rs-fMRI) data
- □ Connectomes obtained using Schaefer atlas with 100 and 200 ROIs



# Which Subnetwork?



 Structure function coupling is affected by:

- Size of the subnetwork
- The nodes that constitute the subnetwork



#### Which Nodes?





## **Comparison of Models**



#### Conclusions

- □ Subnet communicability:
  - "communication in the brain diffuses through a small backbone subnetwork"
  - better explains the functional dynamics in the brain
  - □ balances efficiency and robustness of communication in the brain
- Questions?

